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Reed-Solomon Codes and the Exploration of the Solar System*
by

Robert J. McEliece  and Laif Swanson

1. Introduction.

The exploration of the solar system by unmanned spacecraft is one of the triumphs of
the 20th century. The dramatic photographs of Mercury, Venus, Mu% Jupiter, Satin,

Uranus, and Neptune transmitted by spacecraft with romantic names like Mariner, Voy-
ager, Viking, etc. over distances of hundreds of millions, even billions, of miles, have
made these planets, which were previously known to us only as fuzzy telescopic images
in textbooks, as real to us in the 1990’s as, say, the Himalayas, the Sahara Desert, or
Antarctica.

In a book devoted to Reed-Solomon codes, it is surely appropriate to include a chapter
on deep space applications, since error-control coding in general, and Reed-Solomon coding
in particular, has been part of the communications technology of planetmy exploration,
almost from the beginning. So in this article, we will trace the use of RS codes in space
applications horn “prehistoric” times (about 1970) to the present -– and into the future!

First, some general remarks. In deep-space communication, the channel is, to a very
close approximate ion, a power-limited, wideband, additive Gaussian channel. (See [36],
Chapter 2, or [30], Chapter 4, for good descriptions of this model.) RS codes are not
effective directl~ on such a channel,  for two main re=ns. First, RS codes me best at
combatting bursts of errors, but the Gaussian channel is memory less. Second, there is no
known practical way to “soft decode” RS codes, and the 2 dB loss resulting from hard
quantization prior to decoding is intolerable in all but a few applications.

Nevertheless, RS codes can be effectively used indirectly on the space channel, as
“outer” codes in concatenated systems. The general idea of concatenation, which was
introduced by Forney in 1967 [15], is shown in Figure 1. The idea is to use an “inner”
encoder-decoder pair directly adjacent to the unreliable channel over which reliable com-
munication must be achieved. No matter how well it is designed, the inner decoder will
occasionally make errors, which will normally be bursty and hard-quantized. It is the job
of the outer code to correct these errors. As Forney was the first to observe, Reed-Solomon
codes are ideal choices for the outer code, since they are naturally able to correct complex,

* This chapter was written at the California Institute of Technology’s Jet Propulsion
Laboratory, under contract with the National Aeronautics and Space Administration.
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Figurel. AGeneral  Ccmcatenated Coding System.

bursty, error patterns. They turn outtobe so ideal, in fact, that other codes are rarely
used as outer codes in concatenated systems.

Shortly after the appearance of Forney’s work, Odenwalder, under the directionof
Viterbi [22], realized that concatenation could be used to great advantageon the space
channel, if the inner code is a convolutional code decoded with viterbi’s  algorithm, and
theoutercodeis RS (possibly with the addition of an interleaver), asshownin  Figure2.
ln Figure 3, we see typical performance curves for the space channel that illustrate the
advantages of using RS codes. Without the outer RS code (the “unconcatenated” curve
in Figure 3), the tradeoff between bit, signal-to-noise ratio and decoder error probability is
relatively shallow, whereas when the outer RS code is added to the system, the resulting
curve is comparatively steep, so that if a decoded bit error probability of 10-5 or less is
required, the concatenated system is markedly superior to the unconcatenated  one. Note
however, that if the desired bit error probability is 10-3 or greater, concatenation offers
no significant advantage. As we will see below, this fact, together with the fact that
uncompressed images, which until recently comprised the bulk of the data returned by
planetary probes, are usually acceptable if the bit error probability is 10-2 or less, explains
why RS codes made a relatively late appearance in space communication systems.
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2. Prehistory — the 1971 Mariner Mars Mission.

If we stretch our definitions a little, we can argue that the first space application of RS codes
was on NASA’s 1971 Mariner Mars orbiter mission, which was launched on May 30, 1971.
On that mission, the main downlink code was the (32,6) biorthogonal code, which was
decoded using a fast Hadamard transform, or “Green Machine” decoder [29]. The bulk of
the data returned by Mariner 71 was in the form of digital images of the surface of Mars, for
which a decoded error probability of 5 x 10-3 was acceptable. However, the spacecraft ako
returned data from another experiment, the infrared interferometer spectrometer (IRIS),
which required a bit error probability almost two orders of magnitude smaller. Since
the IRIS data comprised only a small fraction of the total data delivered by Mariner, it
obviously would have been wasteful to transmit the entire data stream at a bit SNR large
enough to produce a decoder error probability of 5 x 10-5. A solution to this dilemma,
devised by Dorsch and Miller [14], was to use concatenation only on the IRIS data. Their
idea was to use a concatenation system of the general type depicted in Figure 1, with the
inner code being the (32, 6) biorthogonal code, and the outer code being a (6,4) RS code
over G17(26). Dorsch and Miller rightly called the outer code a “generalized Hamming
code,” since with redundancy 2 it could only correct one error, but they also observed that
“the described code is a specific case of a Reed-Solomon code,” which is of course also true.
Thus in a sense, this concatenated system was the first space-borne use of Reed-Solomon
codes. However, the first ‘full-blown”
was on the Voyager mission, which we

use of RS concatenated coding on a space mission
describe in the next section.



3.1. The Voyager Mission–History.

Multi-error-correcting Reed-Solomon codes were used for the first time in deepspace  explo-
ration in the spectacularly successful voyager mission, which began in the Summer of 1977
with the launch of twin spacecraft (Voyager 1 and Voyager 2) horn Cape Kennedy, towards
the outer planets Jupiter and Saturn. (See Murray [21] for an insider’s reminiscences about
this historic mission.) Earlier deepspace missions like Pioneer, Mariner, Viking, and in-
deed Voyager itself at Jupiter and Saturn, used sophisticated error-correction but had no
need for Reed-Solomon codes, because their digital images were not compressed prior to
transmission. At Uranus and Neptune, however, Voyager, transmitted some (though not
all) of its images in compressed format, which made RS coding essential. Let us see why
this was so.

A Voyager full-color image is digitized by the spacecraft’s imaging hardware into
three 800 x 800 arrays of eight-bit, pixels, or 3 x 800 x 800 x 8 = 15,360,000 bits. ln
an uncompressed spacecraft telecommunication system, these bits are transmitted, one by
one, to earth, where the image is reconstructed. Of course, if some of the received bits are
in error, the quality and scientific usefulness of the image is degraded, and early studies by
planetary scientists established 5 x 10-3 as the maximum bit error probability acceptable
for images horn NASA planetary missions.* Thus when telecommunications engineers
designed the error-control coding for these missions, they invariably sought to maximize
the “coding gain” at a decoded bit error probability of 5 x 10-3. For example, in the
baseline Voyager telecommunication system, which uses a K = 7, rate 1/2 convolutional
code (originally suggested by Odenwalder [22], [23]), the coding gain at pb = 5 x 10-3 is
about 3.5 dB (see Figure 3).

Odenwalder (op.cit.) also showed that by concatenating the 1{ .= 7, rate 1/2 code
with an outer RS code, as shown in Figure 2, the coding gain for low bit error rates can be
improved considerably. For example, in Figure 3, we see the comparative performance of
the baseline (7, 1/2) convolutional code and the same code, concatenated with a (255, 223)
RS code (assuming an interleaving depth large enough that the RS symbol errors can be
assumed independent). We see that, while the concatenated system is only slightly superior
to the baseline system at pb = 5 x 10-3 (about 0.2 dB), at smaller values of Pb, the
concatenated system is markedly superior. For example, at Pb = 10-6, the concatenated
system is about 2.5 dB superior, which implies that at Pb = 10-6, the concatenated system
can transmit at a 78$Z0 higher data rate than the baseline system. However, as we have

-seen, planetary missions only required Pb = 5 x 10-3, and so these potential gains at
lower values of pb were apparently of no practical value. Shortly after Odenwalder’s  work
appeared, however, an important breakthrough in~data compression occurred that changed

* Unaccountably, in 1977 Murray and Burgess [20], recalling the 1973 Mariner 10 mis-
sion to Mercury, wrote that “Three errors in 100 bits had been established by the imaging
team years earlier as an acceptable level.” Presumably it should read “three errors in 1000
bits.”
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this situation dramatically.

It had been realized since the early 1960s that planetary images were extremely re-
dundant, and that far fewer than 15 million bits should sufiice to represent one of them.
However, the known techniques for reducing this redundancy were too complex to be im-
plemented onboard a spacecraft. But this situation changed in the early 1970’s, when
Robert Rice at Caltech’s Jet Propulsion Laboratory devised a data compression algorithm
that typically compressed a pianetary image by a factor of 2.5, with no loss of fidelity,
and which was simple enough to be implemented in Voyager’s software (see [31], [32], [33],
[34]). (In modern data compression parlance, Rice’s algorithm could be called “lin~by-line
adaptive entropy coding of the pixel differences.”) A factor of 2.5 achieved by data com-
pression translates to 4 dB in system gain, a figure which would be difficult to obtain in
any other way. Still, conservative spacecraft engineers judged the Rice algorithm too risky
for the all-important basic mission to Jupiter and Saturn, although they were willing to
include it as part of a backup system in case the primary communication link failed, and
as a way of enhancing the hoped-for “extended mission” to distant Uranus and Neptune.
Even so, there was a stumbling block.

The stumbling block was that Rice’s decompression algorithm, like most decompres-
sion algorithms, is quite sensitive to bit errors. If a compressed line contains even one
bit error, Rice’s algorithm will, as a rule, garble the line beyond recognition. Thus it was
determined that the venerable value of pb = 5 x 10-3 was no longer acceptable; a much
lower value was required, a value that couId only be achieved efficiently using concatena-
tion with RS codes, as prescribed by Odenwalder! After conside: ~tde study, which took
into account the fact that decoder errors, when they occur, tend to occur in bursts, it
was determined that F’b = 10-6 was necessary for Rice-compressed planetary images. A
glance at Figure 3 shows that the RS concatenated system requires an E~/No of 2.8 dB
to achieve a pb = 10-6, whereas the baseline 1< = 7, rate 1/2 system requires 2.6 dB for
pb = 5 x 10-3. Thus the net energy cost of going from Pb = 5 x 1 0-3 to pb = 10-6 is
0,2 dB, which means that using the Rice compression algorithm together with the ccm-
catenated RS/convolutional  system results in a net gain of about 3.8 dB over the baseline
system. Indeed, this system was implemented on Voyager, and in Figure 4 we see the first
deep-space photograph ever sent ming Reed-Solomon technology.

In the next section, we outline the operational details of Voyager’s RS-enhanced  coding
system.
.,
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3.2. The Voyager Mission. Operational Details.

The Voyager RS code is a (255, 223) code over the field GF(28). The field is represented by
the primitive polynomial m(z) = Zs +Z4 +Z3 + X2 + 1, which is the first degree 8 polynomial
listed in the famous tables of Peterson-Weidon ([27]). The generator polynomial for the
code is

g(z) = (Z–@)(Z-CX2)”””(Z– a32),

where a is a zero of m(z). The code is interleaved to a depth of 4, which means that
the overall performance will not be quite as good as that shown in Figure 3, which is for
inhite interleaving. A careful study, however, shows that for this system, the loss due to
finite interleaving is only 0.02 dB at a decoder error probability of 10-6 [6].

The Voyager on-board RS encoder is a special-purpose hardware device, built fkom
several dozen SS1 space-qualified CMOS parts [11]. In essence, it is a hardware implementa-
tion of the usual systematic shift-register encoder as depicted, say, in [10], sec. 4.3, requiring
32 hard-wired Galois field multipliers, corresponding to the coefficients of 1, Z,... , Z31 in
g(x).

The Vo~ager ground-based decoder was built by Charles Lahmeyer of the Jet PropuL
sion Laboratory ([17]). It implements the RS decoding algorithm outlined in [18], table 8.6.
In particular, it uses the Euclidean algorithm to solve the key equation, then a Chien search
to locate the errors, and finally the usual “w(z) /0’(z)” formula to evaiuate the errors. The
actual physical device is a special-purpose circuit built from discrete-component TTL logic,
primarily 74S Schottkey logic. The decoder uses no microprocessors. Instead, processing
is done by dedicated %mosequencers,” which are special] y develop d microprogrammable
controllers. During the Uranus encounter and Neptune encounters, the Vo~ager data rate
was a maximum of 44.8 Kbps, but the decoder was capable of running at speeds up to one
~egabit/sec.  [17].



4.1. The Galileo Mission—History

Galileo is a two-and-a-half ton NASA spacecraft which was launched towards Jupiter in
October 1989. It will arrive in late 1995, and will then begin a two-year study of the Jovian
atmosphere, satellites, and surrounding magnetosphere. In the summer of 1995, a probe
will detach itself from the main body of the spacecraft, and in December 1995 this probe
will plunge into Jupiter’s stormy atmosphere, from which it will bravely return data until
its inevitable destruction a few hours later. Much, though not all, of Galileo’s data will be
protected by Reed-Solomon codes.

Unfortunately, the Galileo mission has stiered two major operational misfortunes,
both of which have caused engineers to make significant alterations in the communications
technology. The first of these was the Challenger disaster (January 28, 1986), which
delayed the launch of GaZileo by more than three years. The coding system on the pm-
Challenger Galileo mission was virtually identical to that of Voyager, viz. a K = 7, rate
1/2 convolutional code concatenated with a (255, 223) RS code over GF(256).  The only
significant difference was that for unavoidable engineering reasons, the interleaving depth
on Galileo was only 2, vs. 4 for Voyager.

The launch delay and propulsion restrictions caused by the C7dlenger accident re-
sulted in both a longer travel time to Jupiter, and a less favorable planetary geometry.
Because of this, there was the potential for a significant loss of data return. This potential
loss was however partially compensated for by a last-minute decision by spacecraft engi-
neers to include an enhanced error-correction system on the Galileo spacecraft. Instead of
the Voyager-1ike, NASA standard K = 7, rate 1/2, convolutional code, a K = 15, rate 1/4
code was proposed, adopted, and a corresponding encoder was built into the spacecraft
prior to launch [12], [35]. But no changes were made to the RS part of the coding system,
and so we will not discuss this interesting system further.

However, a further calamity was to befall Galileo, and RS codes were heavily involved
in this story, which we shall tell in the next section.
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4.2. The Galileo ‘S-Band Mission.”

In April, 1991, the high-gain, or “X-band” spacecraft antenna, which had been “furled”
like an umbreila for launch, faiied to unfurl properly when commanded to do so. Repeated
attempts to open the antenna failed, and mission managers declared the X-band antenna
dead.

Because of the failure of Galileo’s high-gain antenna, it became necessary to use the
low-gain, or S-band antenna, whose gain was 40 dB less than the high-gain antenna This
reduced the useful data rate from Galileo from 100,000 bits per second to only 10 bits per
second! It fell to JPL engineers, including coding specialists, to increase this data rate
by making post-launch enhancements to the Galileo communications system. The major
system-level enhancement was the addition of 15:1 image data compression [5], [7]. As with
the Voyager system, the presence of data compression means that the required decoded
bit error probability is very small this time on the order of 10-7, and a RS-convolutional
concatenated coding system is indicated. However, the importance of every tenth of a dB
to the success of the mission; and the fact that the received data rate is so small, motivated
JPL coding engineers to propose a very elaborate, high-performance system, which we will
describe briefly. The key idea of these coding enhancements is redecoding,  which means
making several decoding passes through the data. This ideas seems to have originated
independently in ([8], [9]), and [24].

The Galileo “S-Band” coding system is of the same general form as the original Galileo
system, but both the inner codes and outer codes are somewhat modified. The original
Galileo K = 15, rate 1/4 code could not, be used because it was inextricably linked to the
crippled X-band antenna. Furthermore, the only transmission path through the S-band
antenna passes through a hard-wired NASA standard K = 7, rate 1/2 code. In order to
obtain the coding gains achievable horn a long constraint length convolutional code, coding
engineers were forced to program Galileo’s on-board computers to encode a K = 11, rate
1/2 convolutional code, which, when then cascaded with the hardware K = 7 code, formed
a K = 14, rate 1/4 convolutional code [5], [28].

The outer code for the Galileo S-band mission is Reed-Solomon, over the field GF(28),
interleaved to depth 8. However, the 8 codewords in each interleaved block don’t all have
the same redundancy (see Figure 5)

The redundancies chosen for the eight RS codewords in each interleaved block are,
as shown, 100, 10, 32, 10, 60, 10, 32, 10, which works out to an average redundancy of
33 symbols per codeword. The codewords with higher redundancy are called “strong”
codewords, and those with lower redundancy are called “weak” codewords. (In fact there
is a 256th byte in each RS block, which is a synch marker, so that each S-band Galileo
data frame is actually a 256x 8 array of bytes, consisting of 8 bytes of synch marker, 1776
information bytes, and 264 bytes of RS parity. )
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*

r = 100

r = 10

r = 3 2

r = 10

r = 60

r = 10

r= 3 2

r = 10

Figure5. The Galileo S-Band interleaved RS block.
—

The idea is that in the presence of a long burst (or several lon~ bursts) of errors horn
the inner Viterbi decoder, the strongest RS codeword will be very likely to decode, even
though some or all of the weaker codewords may not. Once the RS decoding is complete,
the Viterbi decoder then makes a second pass, aided this time by the sure knowledge of
those bits decoded by the RS decoder. This knowledge is used to force the Viterbi decoder
to consider only paths which are consistent with the known bits, i.e., ‘jhe paths are “pinned
down” at certain locations. (In fact, since a state of the the inner code is specified by
13 bits, and since typically no two consecutive eight-bit RS symbols will be known, the
full Viterbi decoder state will typically not be known. Still, the partial state information
provided by the RS decoder allows the Viterbi decoder to discard many formerly attractive,
paths. ) Because any long Viterbi decoder bursts have been broken up by the states which
are pinned, or partially pinned, by the knowledge provided by the RS decoder, the Viterbi
decoder can do a better job of decoding on the second pass.

After the second pass of the Viterbi decoder, RS decoding is repeated. This time, the
hope is that the second strongest RS word will decode, so that even more knowledge of the

correct bits can be used by the Viterbi on a third pass. Finally, after four passes through
both decoders, the process stops.

Another Galileo decoding enhancement, involving only the RS decoder, is error ~ore-
casting. If one word in an interleaved RS block decodes, but others do not, the corrections
made by the decoded word can be used predict, or forecast, locatiom~ of some of the errors
in the adj scent undecidable RS words. If sufficiently many of the erroneous symbols in
the uncorrectable RS words are successfully forecasted (erased), thcll some or all of these
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words may decode on a second try, since any RS code can correct twice as many erwuws
as errors. However, in the GaZiieo scheme, the “pinning” of states shortens the Viterbi
bursts enough so that error forecasting is of relatively little value. The entire variable
redundancy, quadruple-pass scheme, adopted for use on the Galileo S-band mission, gains
0.53 dB over the “plain vanilla” , constant redundancy, one-pass, RS concatenated schexne,
at a decoder error probability of 2 x 10-’.

Although at the time this article was being written (Summer 1993), no documentation
for the Galileo decoder, as eventually implemented, yet existed, in an earlier article, [1.3],
a similar, but simpler, system was analyzed in detail. In that system, the redundancies
chosen for the 8 RS codewords in each interleaved block were 64, 20, 20, 20, 64, 20, 20,
20, an average of 31 symbols per codeword, and only tow decoding passes were used. The
performance of this scheme, and three simpler schemes, taken from [13], is summarized in
Table 1.

Table 1. Performance of Four RS-Viterbi Concatenated Systems
with decoded 8-bit symbol  error probability of 2 x 10-7.

Decoding passes 1 1 ~ 2
Error forecasting
Redundancy profile (&) (44, 2r~8, 28) (66, 2&, 20) (64, 2r~0, 20)
&/~0 (dB) required 1.17 0.98 0.78 0.76

In Table 1, we see comparisons of four possible schemes of the type described above. In
each case, the inner code is the 1< = 14, rate 1/4 “cascaded” convolutional code described
above, and the RS codewords are length 255, and interleaved to depth 8. The four options
listed in Table 1 correspond, roughly, to the four combinations of yes-no answers to the
two questions (1) Is error forecasting used when decoding a RS block, and (2) Is Viterbi
redecoding done? The first column corresponds to a “plain vanilla” system with constant
RS redundancy 32, no error forecasting, and only one decoding pass. On the bottom
line, we see that the value of Eb/No recluired for this system to achieve a decoded (8-bit)
symbol decoded error probability of 2 x 10-7, is 1.17 dB. In the second column, variable
redundancy RS codes (44, 28, 28, 28,44, 28, 28, 28) plus error forecasting, but only one pass,
yields an improvement of 0.19 dB. In the third column, we see the performance of a system
with variable redundancy (66, 20, 22, 20,66, 20, 22, 20) but no error forecasting, but with
two passes through the decoders. This yields a further improvement of 0.20 dB. Finally, in
column 4, we see the performance of a two-pas, error-forecasting system, with redundancy
profile (64, 20,20,20,64,20,20, 20). The improvement over column three is only 0.02 dB,
but is nevertheless positive, and was judged to be worth the slight increase in complexity
over system 3. The overall improvement over the plain vanilla system is thm seen to be
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1.17 – 0.76 = 0.41 dB, compared to the 0.53 dB improvement for the full-blown Galileo
system, described above.

Encoding, both for the K = 11, r = 1/2 convolutional code, which cascades with the
hardware K = 7, r = 1/2 code to form the inner K = 14, r = 1/4 convolutional code, and
of the various interleaved RS codes, will be done in software by Galileo’s Command Data
Subsystem, which consists primarily of eight space-qualified RCA 1802 microprocessors.
These same processors, will, in addition, perform the on-board data compression. (All
this is in addition to the tasks they were programmed to do before the high-gain antenna
failed!)

On the ground, decoding and redecoding for both the RS and convolutional codes
will be done in software, by a Sun SC 1000 workstation. The RS decoding program
was written by Todd Chauvin, using the time-domain RS errors-and-erasures decoding
algorithm described on p. 155 of [19]. The Euclidean algorithm is lw.ed to solve the key
equation.

In summary, the star-crossed GaMeo mission has provided a once-in-a-lifetime oppor-
tunity for coding engineers to pull out all the stops and design what is arguably the highest
performance, highest complexity error-control coding system ever built, and Reed-Solomon
codes form a centrai part of this system.

5. The CCSDS Standard.

By now the use of Reed-Solomon on spacecraft telemetry systems has become relatively
routine, and so it is not surprising that a committee has written standards. Indeed, in
May 1984,  the Consultative Committee for Space Data Systems, representing the space
agencies for most of the world (including NASA and ESA, the European Space Agency),
issued an official recommendation for a telemetry channel coding standard, [2], [3], [4),
which has since been adopted for use by numerous planetary missiom, including NASA’s
Mars Observer (to Mars: was launched in September 1992, arrived in August 1993), Cassini
(to Saturn: will be launched in 1997, arrive 2004), the joint NASA/ESA Ulysses mission
(to the Sun’s polar regions: was launched October 1990, will arrive June 1994), and ESA
missions Giotto” (1985-1986 mission to to Halley’s comet), Huigens (the Titan probe which
will fly aboard Cassini), and Cluster and Soho (both spacecraft in the International Solar

-and Terrestrial Physics program).

The CCDSD recommended coding standard is twofold: a convolutional coding sys-
tem without concatenation, and a convolutional coding system with concatenation. The

* In fact, Giotto was launched on July 2, 1985, anti arrived at,
Spring of 1986, and so it was transmitting RS encoded data from
soon as Voyager did. (See Figure 4.)
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unconcatenated system contains no surprises: the recommendation is for the venerable
K = 7, rate 1/2 code that has been used so many times before. The concatenated system,
however, does contain some surprises. The recommended RS code is a (255, 223) code over
G17(28), with recommended interleaving depths of 1, 2, 3, 4, and 5. However, (cf. Section
.3.2), the field GF(28) is to be represented by the polynomial m(z)  =X8+X7+ Z2 + z + 1,
rather than the expected X8 + XA + X3 + X2 + 1, and the generator polynomial for the
CCSDS’S (255,223) code is

143

~(g(z) = x – clq,

j=l12

where a is a primitive root in the field GF(28),  i.e, a root of the equation m(z)  = O. This
choice of parameters is the result of work done by Belekamp and Perleman ([1], [25], [26]),
in the early stages of the Galileo project. In particular, Berlekamp discovered a way to
simplify the encoding of RS codes using bit-serial arithmetic, reIative to the so-called dual
basis for GF(28) relative to the “standard” basis {1, a,..., a’ }. The particular choice of
field representation and generator polynomial given above, recommended by the CCSDS,
was motivated by a desired to minimize the encoder hardware for a bit-serial, dual-basis,
encoder.

In 1990, Paaske [24] discussed the possibility of using a “two pass” decoding strategy
on the CCSDS standfid- system. This work
of the Galileo S-band coding system, even
CCSDS standard.

6. Summary and Conclusions.

had a substantial influence on the final design
though that system does not conform to the

Coding has been an essential part of space communications systems for thirty years. Recd-
Sofomon coding for this application is a relative newcomer, but for the past decade it too
has been an integral part of space exploration. Space applications represent some of the
earliest, and most important uses of these powerful codes. We have seen that in deep-space
applications, RS codes are always used as outer codes in concatenated systems of the type
originally proposed by Forney and Odenwalder,  when the required decoded bit or symbol
probability is of the order 10-5 or less, as is usually dictated by the presence of data
compression. Despite the fact that the theory of RS codes is quite mature, we have seen
that the needs of space communication have driven research in RS codes into directions that

-would probably not have occurred otherwise, e.g., bit serial encoders, variable redundancy
interleaving, and so on.

As planetary missions become increasing sophisticated and cost-constrained, and in
particular, as data compression becomes standard practice, we ma-y be sure that Reed-
Solomon codes, by now old friends to the communication system designers, will find their
way into the fart best reaches of the solar system—and beyond!
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